Monatshefte für Chemie 110, 721-727 (1979)

Monatshefte für Chemie © by Springer-Verlag 1979

Magnetische Messungen im Nahordnungsbereich von Heusler-Phasen $(Co,T)_2XY$

(T = Ni, Fe; Y = Si, Ge, Sn und X = Mn, Ti, Zr, Hf)

Rudolf Sobczak

Institut für physikalische Chemie, Universität Wien, A-1090 Wien, Österreich

(Eingegangen 22. August 1978. Angenommen 11. Oktober 1978)

Magnetic Measurements in the Short Range Order Region of Heusler Alloys $(Co,T)_2 X Y (T = Ni, Fe; Y = Si, Ge, Sn and X = Mn, Ti, Zr, Hf)$

Magnetic measurements on *Heusler* alloys $(Co,T)_2XY$ (field and temperature dependence) are performed around the *Curie* points (temperature range: T_C —50 to T_C +50). A method otherwise used to get rid of ferromagnetic impurities only (χ_g versus $\frac{1}{H}$ plot) is applied to pure ferromagnets and yields completely new χ_g (extrap.) versus T curves with a maximum $T_{max} > T_C$. The method was applied to pure gadolinium first which has a *Curie* point within the accessible region of the susceptibility measuring device.

(Keywords: Heusler alloys; Magnetic data; Short range order)

Einleitung

Da sehr viele Stoffe, insbesondere solche mit metallischen Komponenten, ferromagnetische Verunreinigungen enthalten, ist ein χ_g gegen $\frac{1}{H}$ -Diagramm eine sehr häufig angewandte Methode um graphisch (oder auch rechnerisch) diesen ferromagnetischen Anteil an der Gesamtsuszeptibilität zu eliminieren. Folgende Beziehung liegt dieser Methode zugrunde:

$$\chi_{gesamt} = \chi_{para(dia)} + \chi_{ferro} \ (\chi_{ferro} = \frac{M_s}{H})$$

Es wird dabei angenommen, daß M_s ab einer gewissen Sättigungsfeldstärke (meist > 5000 Oe) mit steigendem Magnetfeld nicht weiter anwächst. Mißt man dann die Suszeptibilität bei mindestens zwei R. Sobczak:

Feldstärken oberhalb des Sättigungsfeldes, so ergibt sich eine Gerade, deren Schnittpunkt mit der χ_g -Achse die rein para(dia)magnetische Suszeptibilität liefert, da $\frac{\lim_{H\to\infty} Ms}{H} = 0.$

Bei einem Ferromagneten sollte man deshalb erwarten, daß obige Gerade im $\chi_g - \frac{1}{H}$ -Diagramm durch den Ursprung geht [abgesehen von $\chi_{para(dia)}$, die aber gegen den Ferromagnetismus vernachlässigbar klein ist]. Frühere Versuche in dieser Richtung scheiterten an der nicht

Abb. 1

ausreichenden Genauigkeit der zur Verfügung stehenden magnetischen Waage¹. Die Suszeptibilitäten von Ferromagneten sind um einige Größenordnungen stärker als die von Paramagneten. Die Geraden im $\chi_g - \frac{1}{H}$ -Diagramm werden dann sehr steil und ergeben schleifende Schnitte mit der χ_g -Achse. Die so erhaltenen χ_g (extrap.) Werte sind nur dann brauchbar, wenn sehr genaue Meßwerte vorliegen. Durch eine Weiterentwicklung des ursprünglichen Laborgerätes¹ war es möglich diesen Anforderungen zu genügen (SUS 10)*. Das verwendete Pendelprinzip erwies sich dabei als äußerst vorteilhaft, da es Stabilität mit hoher Genauigkeit verbindet. Die an sich große Genauigkeit von magnetischen Waagen, die Mikrowaagen zur magnetischen Messung benutzen, kann nicht ausgenutzt werden, da schon kleinste ferromagnetische Proben zu einem Kleben derselben an den Polschuhen führen.

Da Nickel mit $T_C = 369$ °C bereits oberhalb des von SUS 10 erfaßten Temperaturbereichs (300 °C) liegt, wurde Gadolinium (Gd filings,

^{*} Suszeptibilitätsmeßgerät SUS 10 der Anton Paar KG, Graz, Österreich.

Magnetische Messungen an Heusler-Phasen

Abb. 2*a*—*d*

Ventron Gmbh., Karlsruhe BRD, m3N) mit $T_C = 293$ K als Testsubstanz gewählt. Die Messungen wurden bei Feldstärken zwischen 7 390 und 11 250 Oe durchgeführt. Mit Hilfe eines programmierbaren Tischrechners (HP 59) wurden über eine Ausgleichsgerade die χ_g (extrap.) Werte bestimmt. Zur genauen Ermittlung von T_C wurden Arrott Diagramme (M_S^2 gegen $\frac{1}{\chi_g}$) herangezogen. Die Übereinstimmung mit den Literaturwerten war ausgezeichnet^{2,3}. Es stellt sich heraus, daß der R. Sobczak:

Paramagnetismus von Gadolinium nicht nur ein Maximum oberhalb T_C aufweist, sondern bei etwa 250 °K auch noch ein Minimum hat und jedenfalls sehr große, feldunabhängige (paramagnetische) Suszeptibilitäten auch noch unterhalb T_C aufweist (Abb. 1).

Probenherstellung und experimentelle Daten

Die Beschreibung der Probenherstellung befindet sich in einer früheren Arbeit⁴. Hier wurde der Großteil der bereits hergestellten *Heusler*legierungen^{4, 5, 6}, soweit $T_C < 300$ °C war, mit der viel genaueren magnetischen Waage

Abb. 3

SUS 10 rund um T_C in Abhängigkeit von Feld und Temperatur neuerlich vermessen.

Im System (Ni,Co)₂MnSn wachsen χ_g (max), $M_S(0)$ und $T_{max} - T_C$ mit steigendem Ni/Co-Austausch an (Abb. 2*a*).

Im System (Co,Fe)₂TiSn fallen χ_g (max) und M_S (0) ab, $T_{max} - T_C$ steigt mit zunehmendem Co/Fe-Austausch an. Dasselbe gilt für die Phasen (Co,Ni)₂TiSn für den Co/Ni-Ersatz (Abb. 2b).

Im System (Co,Fe)HfSn steigen χ_g (max) und $M_S(0)$ und T_{max} — T_C mit dem Co/Fe-Austausch an, dies ist auch für den Co/Ni-Einbau in (Co,Ni)₂HfSn der Fall, während χ_g (max) und $M_S(0)$ kleiner werden (Abb. 2c).

Schließlich fallen χ_g (max) und $M_S(0)$ im System (Co,Ni)₂TiGe schwach ab und T_{max} — T_C steigt an (Abb. 2d):

Eine Gemeinsamkeit aller obigen Systeme ist das Ansteigen von $T_{max} - T_C$ mit jeder Art von Austausch. Zu bemerken ist, daß in den Systemen (Co,Fe)₂ZrSn und (Co,Ni)₂ZrSn manchmal $T_{max} < T_C$ ist. Da bereits Co₂ZrSn (siehe weiter unten) abweichendes Verhalten zeigt, wurden diese Systeme nicht in die obigen Diagramme aufgenommen.

Eine weitere Gemeinsamkeit aller Systeme ist das parallele Verhalten von χ_g (max) und $M_S(0)$; entweder wachsen beide oder beide fallen ab. Diese Parallelität wird zusätzlich in den Reihen der Randphasen (Co₂TiSn, Co₂ZrSn,

 Co_2HfSn und Co_2TiSi , Co_2TiGe , Co_2TiSn) erkennbar. In der Abfolge Co_2XSn (X = Ti,ZrHf) liegt ein unerwartetes Minimum bei Co_2ZrSn (Abb. 3).

Die auf $M_S(\theta)$ und T_C normierten Magnetisierungskurven von Co₂Ti Y (Y = Si,Ge,Sn) werden von Co₂TiGe deutlich flacher (Abb. 4*a*).

Die normierten Magnetisierungskurven der Reihe $\text{Co}_2 X$ Sn ergeben für $\text{Co}_2 Zr$ Sn neuerlich ein abweichendes Bild (Kreuze in Abb. 4b).

Abb. 4a, b

Diskussion

Die mit Hilfe der χ_g gegen $\frac{1}{H}$ -Extrapolation gewonnene χ_g (extr.) gegen T-Kurve liefert zwei neue Kenngrößen T_{max} und χ_g (max). T_{max} könnte dabei in folgender Weise mit dem Verlauf des Nahordnungsparameters in Zusammenhang gebracht werden. Da oberhalb von T_C nicht sofort jede magnetische Ordnung (Nahordnung) verschwindet, sind noch immer relativ große Bereiche (einige 100 Å) vorhanden, in denen sich die Einzelmomente zu Riesenmomenten addieren, die sich dann untereinander paramagnetisch (Superparamagnetismus) verhalten. Nimmt man an, daß diese Cluster in 1. Näherung gleich groß sind, so kann das Gesamtmoment in diesem Bereich knapp oberhalb T_C als $\mu_{gesamt} = \sqrt{p_{Cl} (\mu_{Cl})^2 + p_s (\mu_s)^2}$ beschrieben werden $(p_{Cl}...$ Prozentsatz an Clustern, $\mu_{Cl}...$ Clustermoment, $p_s...$ Prozentsatz an Einzelmomenten, $\mu_s...$ Einzelmoment). Da die Clustermomente quadratisch eingehen, wird das Gesamtmoment in erster Linie von der Clustergröße bestimmt. Das heißt ein Maximum von χ_g (extrap.) bei $T_{max} > T_C$ bedeutet ein ungefähres Gleichbleiben der Clustergröße R. Sobezak:

(Riesenmoment) und damit des Nahordnungsparameters bis etwa T_{max} . Ein Absinken der Clustergröße könnte nämlich kaum durch eine größere Zahl von kleineren Clustern kompensiert werden.

Das Ansteigen von $T_{max} - T_C$ mit steigendem Austausch erklärt sich durch eine Stabilisierung der Cluster durch den Einbau von Fremdatomen, was auch bei der Koerzitivkraft der Fall ist.

 χ_g (max) kann zur Berechnung der Clustergröße herangezogen werden. Dazu sind außerdem noch folgende Annahmen notwendig: Wie bereits erwähnt, denkt man sich sämtliche Momente im Cluster zu einem Riesenmoment addiert; dieses soll nun im Zentrum der idealisiert als Kugel gedachten Cluster lokalisiert sein. Dann ergeben sich zwischen diesen Riesenmomenten große Abstände und damit schwache Wechselwirkungen, vereinfachend nehmen wir an $\Theta_p = 0$. Die Cluster folgen dann einem Curiegesetz und

$$\mu_{ges.} = 2,83 \sqrt{C}, \ \chi (\text{max}) = \frac{C}{T_{max}}.$$

Wird weiters angenommen, daß alle Co-Momente bei T_{max} in Clustern sitzen (wegen der ang. Kugelgestalt nicht möglich) und ein Co-Atom $1\mu_B$ beiträgt, so ergibt sich:

$$\mu_{ges.} = \sqrt{n},$$

da das Clustermoment quadratisch mit Anzahl der Atome wächst und der Prozentsatz an Clustern mit Anzahl von Atomen in Clustern fällt. Folgende Clustergrößen errechnen sich bei T_{max} :

 $Co_2TiSi...28$ Co-At., $Co_2TiGe...242$ Co-At., $Co_2TiSn...546$ Co-Atome.

Neben diesen Berechnungen [weitere könnten aus der Form der χ_g (extrap.) gegen T-Kurven möglich sein] läßt sich die interessante Parallelität zwischen dem Verlauf der χ_q (max) und $M_s(0)$ -Werte aus der Mittlerstellung des Nahordnungsbereichs zwischen der Fernordnung unterhalb T_{C} und dem reinen Paramagnetismus in einiger Entfernung oberhalb davon $(>\Theta_p)$ verstehen. In den Clustern herrschen etwa dieselben Verhältnisse wie unterhalb T_{C} , nur über sehr kleine Bereiche. Es bleibt daher auch eine eventuelle Antiparallelstellung einzelner Momente (Ferrimagnetismus) im Wesentlichen erhalten. Der Verlauf beider Größen gegen die Zusammensetzung ist daher ähnlich. Im rein paramagnetischen Zustand hingegen wird das Gesamtmoment durch $\mu_{ges} = \sqrt{p_1 (\mu_1)^2 + p_2 (\mu_2)^2 + \dots}$ beschrieben und steigt oder fällt mit der Anzahl (Vergrößerung, Verkleinerung) der Momente (keine Antiparallelstellung möglich die das gemessene Moment verkleinert). Der Verlauf der $\chi_q(\max) - T$ -Kurve oberhalb T_{max} ist demjenigen eines Paramagneten ähnlich (Superparamagnetismus).

Der Verlauf der normierten Magnetisierungskurve der Reihe $\operatorname{Co}_2\operatorname{Ti} Y$ ($Y = \operatorname{Si},\operatorname{Ge},\operatorname{Sn}$) zeigt, daß der Haupteinfluß auf die ferro(ferri)magnetische Wechselwirkung von den Hauptgruppenmetallen kommt. Da ein Parameter der die Wechselwirkung (Ww) in den *Heusler*-Legierungen gut beschreibenden *RKKY* Ww. die Leitungselektronenkonzentration (Wellenvektor der Fermikugel der Leitungselektronen) ist und die anderen Parameter (Abstand der magn. Atome und deren Moment) sich nicht stark ändern, ist das naheliegend. Dementsprechend weisen die Magnetisierungskurven in der Reihe Co_2XSn ($X = \operatorname{Ti},\operatorname{Zr},\operatorname{Hf}$) nur geringe Unterschiede auf (Abb. 4*a*, *b*).

Dem Fonds zur Förderung der wissenschaftlichen Forschung wird für die Bereitstellung der magnetischen Waage SUS 10 gedankt.

Literatur

- ¹ R. Sobczak und H. Bittner, Rev. Chim. Miner. 1969, 983.
- ² M. N. Deschizeaux und G. Develey, J. Phys. (Paris) 32, 319 (1971).
- ³ D. H. Chaplin, Phys. Lett. A46, 55 (1973).
- ⁴ R. Sobczak, Mh. Chem. 107, 977 (1976).
- ⁵ R. Sobczak, Mh. Chem. 108, 1265 (1977).
- ⁶ R. Sobczak, Mh. Chem. 109, 455 (1978).